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Abstract-Simultaneous mass and energy transfer in shock “second sound” wave moving with speed cc is 
investigated and relationships describing diffusive fluxes of mass Ji and energy J, vs. concentration and 
enthalpy increments in wave front are found. Applying these relationships to the well known thermodynamic 
formula for deviation of entropy from equilibrium leads to an important relationship which defines the so- 
called relaxation entropy, As,, as entropy deviation resulting from the presence of diffusive fluxes. A 
generalized expression for As, including momentum transfer in incompressible fluids is also given. 

It is shown that the presence of relaxation entropy in the entropy balance modifies the entropy source in 
the form that leads to phenomenological equations with inertial terms or, in a special case of uncoupled 
process, to the Cattaneo (1958) equation [l] and Maxwell equation for a visco-elastic fluid, Luikov (1966) 
[2]. The general theory of transformations of phenomenological equations and relaxation coefficient 

matrices is developed. 
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NOMENCLATURE 

dZ 
au = [c+], thermostatic matrix of 

capacities ; 
specific heat ; 
at+ - new matrix of capacities ; 
au*' 

= J(G/p), constant speed of second 
sound wave propagation ; 
ordinary and new thermodynamic forces 
(including relaxation terms and gra- 
dients of transport potentials); 
modulus of shear rigidity; 
specific enthalpy; 
deviation of enthalpy, enthalpy incre- 
ment in wave front (Fig. 2); 
vector of density of diffusive energy flux ; 
vectors of densities of diffusive mass 

fluxes, 1 < i < n - 1; 
co1 (Jr, J, . Jn-r, J,), column matrix 
containing all independent fluxes; 

new matrix of fluxes as a result of 

transformation of matrix J ; 
ordinary and transformed Onsager mat- 
rix, respectively ; 
unit normal vector; 
matrices of transformations of fluxes and 
forces, respectively; 
pressure and pressure tensor, 

respectively ; 
specific classical entropy and total speci- 
fic entropy of disturbed region, respec- 
tively (Fig. 2) ; 

As,, 
R, 
T, 
t, 
U 

u, 

u*, 
V, 
W, 

X, 

x*, 
Yi, 

Y, 

Z, 

z*, 

A, 

0, 

bdr a,, 

relaxation entropy of unit volume ; 
universal gas constant; 

temperature; 
time ; 
unit tensor ; 

= co1 ( A-h A-b-1 1 
p...p - 

T T > ‘T’ 

column matrix of ordinary transfer 
potentials; 
transformed matrix II; 

=P -I, specific volume; 

barycentric velocity ; 

= co1 grad?,..., grad-, 

grad + 
> 
, column matrix of classical 

thermodynamic forces; 
transformed matrix X; 
mass fraction of ith component; 

= col (Yl? Y2 . . . y,_ r), column matrix of 

independent mass fractions; 
= co1 (yr, y2 . . . y,-r, h), column matrix 

of thermodynamic state (for P = const); 
transformed matrix z ; 
deviation, increment ; 
entropy source; 
contributions to entropy source result- 

ing from diffusion and relaxation, 
respectively ; 
dynamic viscosity ; 
mass density ; 
original and new relaxation coefficient 
matrix, respectively ; 
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n, diffusional part of pressure tensor; 

Pi- chemical potential of ith component. 

Subscripts 

0, undisturbed state; 

1. state at wave front on disturbed medium 
side: 

4 diffusion of mass or energy; 

h, heat; 

1, ith component; 

n. component in normal direction ; 

q, energy in coupled process; 

r, relaxation; 
w, shock wave. 

Superscripts 

total entropy ; 
T, transpose matrix ; 
* quantities obtained as a result of 

transformations ; 
- 1, reverse matrix ; 
0, deviator of tensor. 

1. INTRODUCTIOiX 

THE PHYSICALLY natural demand that the partial 

differential equations for transport processes should 
secure the finite velocity of propagation of thermody- 
namic state perturbation has caused a certain dispraise 
of the well known conventional theory of energy, mass 

and momentum transfer based on parabolic equations. 
In many papers [ 1~ 151 it was emphasized that para- 
bolic equations imply an infinite speed of propagation 
and, therefore, they should be replaced by adequate 

hyperbolic equations obtained by combining the 
phenomenological relationships of the non-Fourier 
(or more generally, non-Onsager) type and con- 

servation equations. A considerable number of these 

papers dealt with uncoupled processes as, for example, 
pure heat conduction in solids [l-3,5-141, isothermal 
mass diffusion 12.4, 141, and momentum diffusion [2, 
8, 141. 

Just lately a more general theory has been developed 
[15] featuring coupled processes in which simul- 
taneous mass and energy transfer takes place. In this 

theory, however. thermodynamic problems connected 
with the finite speed of propagation of disturbances 
were not analyzed. To this theory [ 151 and also to the 

author’s earlier paper [ 141 the reader is referred before 
studying this paper.+ 

The relaxation terms in the non-Onsager phenomen- 

ological equations, that associate thermodynamic 
fluxes and forces, indeed secure the hyperbolic charac- 
ter of the resulting partial differential equations [ 151. 
But at the same time a proof is required that both the 

t In the papers quoted the reader will also find many other 
valuable references concerning wave equations for transport 
processes. 

phenomenological equations (with relaxation terms) 
and the respective wave equations are consistent with 
the non-equilibrium thermodynamics in the sense that 
they secure positiveness of the entropy source (T. The 
present paper will consider this problem on the 
example of simultaneous mass and energy transfer in 
n-component isobaric solutions. 

The state of the investigated solutions will be defined 
by n - 1 mass fractions yi and the enthalpy h. In the 
description of the transport phenomena the densities 
of diffusive mass fluxes, J ,, J, J,_ ,, and the density of 

diffusive energy flux J, as well as transfer potentials, 

P”.-Pl PL,-P2 Pn-P(n-I 1 

T’ T’“’ T ‘r’ 

will be used. The matrix notation will be frequently 
exploited for which 

z = co1 (l.1, ~2 y,- 1, h), 

u = col 

c 

L&-P1 P,-P2 P.-P”-1 1 

T’ T p”‘p’ r T J ’ 

J = co1 (J1, J, J,_ ,, J4). 

It may seem that the non-Onsager phenomenologi- 
cal equations with relaxation terms [for instance the 

matrix equation (30) in Section 31 are incorrect 
because non-negativness of the classical expression for 
the entropy source 

” n-1 

gd = 1 Jk grad uli = 1 Ji . grad 
k=l i=l 

+ J, grad const.), (1) 

is not secured for such phenomenological equations. 

However, this contradiction to a local formulation 
of the second law of thermodynamics is only apparent 
because, as is seen from what follows, equation (1) does 

not precisely describe the entropy source in the non- 
classical case where relaxation effects play a part. That 
is why equation (1) cannot provide a basis for the 

correctness of the non-Onsager equations to be 
verified. 

In the present (two-part) work it is shown that this 
basis is provided by a certain generalized form of 
equation (1) which accounts for the presence of inertial 
forces associated with the time derivative of fluxes:. 
Development of the method of obtaining such a basis 
is one of the objectives of this paper. If generalization 
of (1) could be found, then the phenomenological 
equations containing the relaxation terms would result 
from the condition Q > 0 as in the classical case. 

Different generalizations of the entropy source have 
already been given in the case of heat [16] and 
momentum [17, 181 diffusion. These generalizations 

lead, among other things, to justification of the form of 
the Cattaneo equation [l] which describes pure heat 
transfer. However, these generalizations are somewhat 

: E.g. the matrix equation (26) in this paper. 
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formal and therefore (even in simple cases) not all of 
the new coefficients have been defined. Also the 

explanation of how the entropy source is modified 
when the coupled processes, such as, for instance, 
simultaneous mass and energy transfer, take place. 

In the present work, attention is directed towards a 
general method of derivation of the equations which 
describe entropy and entropy source in the presence of 
relaxation effects for the processes of coupled mass and 
energy transfer in chemically non-reacting solutions of 
negligible compressibility. 

This method is based on the analysis of the physical 
situation in the “second sound” shock wave front and 
on the well known classical formula for the square 
approximation of entropy deviation from equilibrium 
[19-211. Owing to the latter fact all of the coefficients 
appearing in the present theory are well defined. Also 
presented is a certain generalization of the theory 
involving momentum transfer in incompressible fluids. 

It will be also shown (Part II) that the present theory 
always leads to the results which correspond to the 
well-known particular cases. 

The classical non-equilibrium thermodynamics is 
based on the local equilibrium postulate [20-221. As a 
consequence of this postulate, the theory (in the 
investigated isobaric case) makes use of the equilib- 
rium form of the relationship which expresses the 
entropy sin terms of the enthalpy h and concentrations 
yi. Such an approach results in a linear dependence of 
transport potential gradients on fluxes described by 
the Onsager equations. 

In the present work we give up the local equilib- 
rium postulate and assume a priori local non- 
equilibrium of continuum. The entropy of the distur- 
bed non-equilibrium state differs at every point of the 
continuum from the local equilibrium entropy s(h, y), 
with the difference As = s’ - s being a function of all 
the independent diffusive fluxes J,, J,, J,_ r, J,, see 
equation (16). This function is called the relaxation 
entropy because it is associated with the tendency of 
every element of the continuum to recover thermody- 
namic equilibrium during vanishing of fluxes J or 
relaxation of stresses Ir(max s’ = s for J = 0 and II = 
0). Since such a process is thermodynamically irrever- 
sible, the relaxation entropy As = s’ - s is a negative 
quantity. The present approach to a certain extent 
resembles that used in dynamical problems of the 
elasticity theory [23] where, however, the free energy 
potential (rather than entropy) is usually used. 

The project of our analysis is as follows. In Section 2 
of this paper, the coupled heat and mass transport 
occurring in the front of a shock wave, moving with a 

constant speed co, is investigated and the expression 
describing the entropy of disturbed state as a sum of 
classical entropy and relaxation entropy is worked out. 
This expression is then used (Section 3) to derive a 
generalized formula (26) containing an entropy source 
with relaxation terms. From this formula, the genera- 
lized matrix phenomenological equation of the non- 
Onsager type results together with the definition of the 

matrix of relaxation coefficients. Then in Section 4, the 
invariency of phenomenological equation in relation 

to linear transformations of thermodynamic fluxes and 
forces is discussed. In Section 5, a generalization of the 
theory, including momentum transfer in incompress- 
ible fluids (leading to the Maxwell equation for 

viscoelastic fluid) is given. 
In Part II of this work (a separate paper), examples 

of linear transformations of fluxes and forces are given. 
This treatment is used to define new forms of the non- 
classical entropy source and phenomenological equa- 

tions that relate new fluxes and forces. Then, on the 
basis of the most suitable phenomenological equa- 
tions, a system of hyperbolic-type partial differential 
equations, describing thermal diffusion in multicom- 
ponent systems, is derived. Finally, simplifications of 
the theory to be applied to particular cases known 

from the literature are discussed. 

In paper [24], the significance of relaxation entropy 

for formulation of the variational principles that lead 
to the non-Onsager phenomenological equations and 
conservation equations is treated. 

2. THE COUPLED MASS AND ENERGY TRANSFER 
IN A SHOCK WAVE 

Consider a non-stationary shock wave in which 

there is a simultaneous energy and mass transfer. 
The motion of the wave is a change in position of a 

certain surface of discontinuity, Fig. 1. Of course, the 
wave velocity has nothing in common with the bary- 
centric velocity of the medium (solid or fluid). In the 
frame fixed with respect to the undisturbed part of the 
medium the wave speed is of the same order as that of 
sound [7]. On the other hand, the barycentric velocity 
in the disturbed part is close to zero and, in media 

exhibiting small compressibility, may not be taken into 
account. In the case of an incompresssible continuum 
the moving wave front leaves behind a thermodynami- 
cally disturbed part of the medium which is at rest, 

In the present consideration the conditions that 

describe the jumps of thermodynamic quantities in the 
wave front will be important. These conditions will be 
defined by analyzing an arbitrary element of the wave 
front and investigating the physical phenomena in the 
frame fixed with respect to this element (in such a frame 
formulation of the conditions is the easiest). The 
conditions, however, will be expressed in terms of the 
quantities which characterize the original frame (fixed 
in relation to the undisturbed part) in which the 
diffusion of mass and energy is usually described. 

In the wave front frame, Fig. 1, the elements of the 

continuum pass through the surface of discontinuity. 
On this surface there must be a continuous mass flux 
(the medium flows from side 0 to side l), that is 

po(wo - w,) no = P, (w, -WA . no = j, no. (2) 

The symbol no denotes the unit vector of the external 
normal to the surface of the front, while the symbol w, 
denotes the velocity of the wave front. The velocity w, 
is determined along the normals n, = - no (the 
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FIG. 1. Designation of basic quantities characterizing the 
shock wave. 

direction of wave motion). Since for barycentric velo- 
cities w0 z w, = 0, equations (2) yield 

j. ‘no = j, ‘no = - jl .n, = poco, (3) 

where the scalar 

co = - w;n, = w;n, (4) 

is the propagation speed. The above definitions secure 
co > 0. Also,j = j,.n, > 0. 

The mass balance of the component i ist 

Yiojo’n, +(Ji +yi,jl).n, ~0. (5) 
Therefore, on the basis of (3) and (5) 

Ji ’ nl = PoCdYi, - Yiol (6) 
In a similar way the energy balance is obtained as 

h,j,.n, + (J,+h,j,).n, = 0, 

or, using (3) and (7),$ 

(7) 

J, .n, = ~~dh -ho). (8) 

In the medium close to the wave front, on the 
undisturbed side, all the physical parameters are 
constant. That is why this allows the statement that the 
motion of the disturbed region is a motion of isoen- 
thalpy (and at the same time of the isotherm, isobar, 
etc.) surrounding the disturbed region and having the 
same enthalpy (temperature, concentrations and other 
properties) such as the undisturbed region. Let this 
enthalpy (and concentrations) be continuous when 
passing the surface of the wave front. It means that an 

t It should be kept in mind that J, and Ji are ‘diffusive’ 
fluxes. These are expressed in equations (5) and (7) or (6) and 
(8) in terms of concentration and enthalpy jumps. 

$ Note that the presence of c0 in equations (6) and (8) does 
not imply that J, and Ji are convective quantities. In fact, 
these are diffusive fluxes that are ‘only expressed’ in terms of 
the convective flux pocO of equation (3). 

assumption is made that the continuum on the distur- 
bed side of the wave front has two enthalpies, h, and h, 
(and two other sets of parameters), which describe it. 
Here occurs, so to say, an extension of the state z. = 
col(y,,, y,, . y,_ ,,,, h,) to the disturbed side, Fig. 2. 
This concept can also be applied to the interior of the 
disturbed part. Then, a variable extended state for an 
arbitrary point of the medium can be considered. 
Consequently, the local state of the mixture is de- 
scribed by the vector z = col( Y,, Y,, . . y, _ ,, h), and the 
extended state, by the vector z+Az=col(y,+Ayy,, y, 
+ Ay,... h + Ah) (Fig. 2). In what follows, 
advantage will be taken of such a representation of the 
state of continuum. Now, let us return to investigation 
of the physical situation close to the wave front. 

The diffusive fluxes of mass and energy are directed 
along the normal n towards the wave front, i.e. they are 
orthogonal to an ‘equipotential’ surface of the un- 
disturbed front side. This being so, 

Ji n1 = Ji, (9) 

J, ‘n, = J,. (10) 

Therefore, on the basis ofequations (6), (8), (9) and (10) 

Jf = P; C6 (Yil - Yio)2, (11) 

J4’ = p; c; (h, - ho)‘. (12) 

The directions of Ji and J, are the same [cos a(J,, J,) 
= l] and therefore 

Ji ‘Jq = P~C~(Y~I - Yi,)(h, - ho). (13) 

Equations (1 l)-( 13) constitute an important 
result-they express the state disturbance, Azi “gf, 

ziO - zilr in terms of the diffusive fluxes Ji. 
We shall now describe the deficiency of entropy 

close to the wave front caused by disturbances. This 
deficiency, that is s; - sl, must disappear in the state 
(h,, yil) and must be negative beyond this state, 
because the entropy of deviated state s’~ must have a 
maximum equal to s1 for h = h, and Yi = yi,. This 
means that the first partial derivatives of s; with respect 
to the increments Ah = h - h, and Ayi = yi - yi, 
must vanish for h = h, and yi = yi,, or that the 
expansion of s’~ about s1 must begin with square terms 
(should the linear terms appear in this expansion, the 
first derivatives would be different from zero and the 
local equilibrium entropy would not be maximum). 

This expansion (for p = const.) can be written in one 
of the alternative forms known from the classical 
thermodynamics [ 19-211: 

s; = s, +; AhAT-’ + ‘i’AyrA 
Ir=, 

= ; $ $ cik AuiAuk 

= ; [I$ :< ‘(” ;;) ’ - 1 Ay, Ayi 

+ 2 ak-Pi) T-’ 
c?h 

Ayi Ah + G Ah’], (14) 
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where 

u = C0l(Ui,U~...U”_,,U”) 

daf. P’n-Pn-1 1 
= 

_“‘_‘T T 

The derivative [a(~,, -pL1)T- ‘/%I],,, can be replaced in 
equation (14) by the derivative (dT_‘layi),, based on 
the Maxwell relation. These derivatives pertain to the 
state T,, p,, and yi,. 

Application of equations (11-13) to express the 
increments Ayi = uiO - yi, and Ah = h, - h, in terms 
of the diffusive fluxes yields an important expression 
which describes the total? entropy s; of the disturbed 
side of wave front as 

(15) 

Here si is the function of hi and of all y,i, known from 
the classical thermodynamics, and the term containing 
fluxes is the entropy of relaxation. 

It is well known that the requirement for positive- 
ness of the entropy source, obtained for the classical 
quantity si, leads to phenomenological relations of 
Onsager’s type. It will be shown that a similar demand 
for the source of the total entropy s; leads to the 
CattaneoVernotte type of generalized phenomen- 
ological equations suggested by the present author in 
[15] for the coupled processes without a thermody- 
namic justification. 

Since equation (15) is derived for the wave front, we 
can be sure that the phenomenological equations 
obtained on its basis (see below) will be exact near the 
disturbed side of wave front. The corresponding 
equations for the interior of disturbed region could 
be, at least in principle, more general as these are 
associated with a less particular physical situation. At 
present, however, it will be arbitrarily assumed that 
equation (15) will hold also for each point of the 
disturbed region interior. The non-Onsager phenomen- 
ological equations obtained in this way will have the 
same form both for the disturbed side of wave front 
and any point of the interior of disturbed region, which 
physically seems to be be rather natural. (This is, in 
fact, a standpoint based on what has been published up 
till now on pure heat conduction.) 

The acceptance of the standpoint that equation (15) 
can be applied also to the interior of disturbed region 

t By the total entropy, the sum of the classical entropy and 
entropy of diffusional lluxes is meant. 

1: Equation (19) can alternatively be treated as a defmitive 
equation for G in terms of cV 

results in a fundamental relationship for the total 
entropy s‘ of an arbitrary element of the medium : 

s’(y,, y, . . . h, J,, J, . . . J4) = s(Y,,Y,. . . h) 

(16) 

This lays emphasis on the fact that the appearance of 
diffusive fluxes is inseparably connected with the 
inherent thermodynamic non-equilibrium which cau- 
ses relaxation of fluxes (see Fig. 2 for interpretation of 
the local values z = (h, yj) and their increments Az). 

It is convenient to use equation (16) in an alternative 
matrix form using the so-called capacities tit = az@u, 
[ 151, i.e. elements of the following matrix : 

c= 

It is important that the matrix C is negatively defined 
and symmetric [ 15, 19,201 which is a consequence of 
the second law of thermodynamics and Maxwell 
relations. 

It can be shown that the partial derivatives in 
equation (16) are coefficients of matrix C- ‘. Therefore, 
equation (16) can be written in a concise matrix form 

s’(z,J) = S(Z) + -$JTc-’ J. (18) 

In equation (18) the dependence [2] of modulus of 
shear rigidity G on the propagation velocity: 

G = PC;, (19) 

was exp1oited.f The significance of expression (18) lies 
in the fact that it allows construction of a new formal 
structure of the irreversible thermodynamics based on 
the concept of local non-equilibrium in a continuum. 
This means the renunciation of the fundamental 
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assumption of local equilibrium accepted in the classi- 
cal non-equilibrium thermodynamics [20-221. 

The consequences of such an approach are discussed 
in the next Section. 

3. THE NON-CLASSICAL ENTROPY SOURCE AND 

NON-ONSAGER PHENOMENOLOGICAL EQUATIONS 

With the help of the conventional approach of non- 
equilibrium thermodynamics we will find the entropy 
source by making use of mass and energy conservation 
equations in the expression for time derivative of the 
total entropy s’. 

The conservation equations aret : 

p!$ = - div Ji, i = 1,2...n-1, (20) 

p $ = - div J 4’ 

and can be written in the following matrix form 

p g = - div J. 

(21) 

(22) 

On the other hand, on the basis of equation (18) the 
expression describing time derivative of the total 
entropy s’ is (for p = const.) 

ds’ _=,-I$+“~’ 
dt k=l 

+LJ+ 

PG 

(23) 

Making use of (20) and (21) in (23) gives 

x divJ, + $J’C-‘g, (24) 

that is 

p$ = - div 
Jq- &cJk 

k=l 

T 
+ J, .grad T-’ 

+ ;JTC-$ (25) 

(the complicated structure of the scalar in the last 
component of this equation should be kept in mind). 

Equation (25) shows that besides the classical 
expression for the entropy source there is an additional 
term connected with relaxation. Taking into con- 
sideration that the column matrix J is composed of J, 
and J,, the non-classical entropy source resulting from 

equation (25) can be written in a compact matrix form 

o= JTF= JT(gradu+C!! (26) 

where 

grad” = col[gradry)... 

grad (T), grad [;)I. 

Note the appearance of additional inertial forces in the 
generalized thermodynamic forces Fi of equation (26). 
In [24] the role of the reversible and dissipative forces 
in equation (26) is shown. 

Let us notice also that equation (26) can be written 
in the form: 

where 

u = or + 0d, 

gd = JT grad u (27) 

a=J'CJ 
I 

G 
t-28) 

describe the classical and non-classical component of 
entropy source, respectively. Although such a separ- 
ation is formal, sometimes it facilitates the use of 

equation (26) (see Section 4). 

The condition of non-negativeness of entropy 
source (26) leads to a phenomenological matrix 

equation 

(29) 

in which L is the Onsager matrix defined positively. 

Note that in the case of pure heat diffusion c,, = 
-C,T’, L, = pC,aT’ = AT2 and equation (29) is 

reduced to the Cattaneo equation 

J,+4jh= -i.gradT. 
CO 

(29a) 

Equation (29) can be replaced by a system of two 
equations 

J + ,j = L grad u, (30) 

T=_Lc-‘. 
G 

(31) 

For equation (29) [or (30)and (31)] theentropy source 
(26) takes a bilinear form: 

a=JTL-‘J>O (Lao). (32) 

t Note that this ‘general’ form of conservation laws 
cannot be affected by the presence of relaxation or other 
terms. On the other hand, a purely thermodynamic re- 
lationship [see equation (23)] must undergo a change due to 
an additional (non-equilibrium) term which describes 
relaxation. 

1 Somewhat surprisingly, the static matrix C appears in 
the kinetic equation (28). This is, of course, a consequence of 
our expression for As, equation (14). In Section 7 of Part II it 
will be, therefore, shown that the general theory based on 
equation (26) simplifies to the ‘special’ cases known earlier 
from the kinetic theory. 
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FIG. 2. Interpretation of disturbed and extended states 

Equation (30) constitutes a generalization of the 

Cataneo equation (29a) for coupled processes, while 
equation (31) defines the matrix of relaxation coef- 
ficients by two basic matrices: the kinetic (Onsager) 
matrix L and the thermostatic capacity matrix C. 

Equations (30) and (31) have been predicted rather 
than proved by the author in the earlier work [15] but 

their thermodynamic origin has not been then dis- 

covered as yet. 
The present theory shows that these result from 

renunciation of the postulate of local equilibrium 
which is one of the basic postulates in the classical 
irreversible thermodynamics. Consequently, the re- 

laxation terms appear as a result of application of a 
more proper expression for entropy, equation (16). 
Thus, no essentially new technique is required to 
obtain the Cattaneo-type non-Onsager equations or 
related wave equations. 

It is important that here all of the new parameters 
and functions (describing relaxation effects) are de- 

termined quantitatively and that they are expressed in 
terms of the known and measurable physical quan- 
tities. Note that in the limiting case c0 + x the 
classical description based on the local equilibrium is 
recovered. 

4. THE GENERALIZED THEORY OF TRANSFORMATION 
OF FLUXES AND FORCES AND THE INVARIANCY 

OF THE PHENOMENOLOGICAL EQUATION (29) 

The bracketed expression in equation (26) is a 

matrix thermodynamic force of simultaneous energy 

t An equation of this type is given in [20]. It takes into 
account the kinetic energy of diffusion only and not the 
available energy of local non-equilibrium state, as equation 
(33) does. Note, therefore, the agreement ofequation (33) with 
the results obtained from the kinetic theory, see Section 7 of 
Part II. 

and mass transport with relaxation. In what follows 
this force will be denoted by F = co1 (F,, F, . . F,_ i, 
F, = F,), while the component F, is? 

F, = grad uk $ i c,’ dJi, 
i=l G dt 

(33) 

One can see that each of the generalized forces F, 
includes inertial components which depend on all the 

fluxes. Equation (29) expressed in terms of the matrix F 
has a simple form 

J = LF. (34) 

Suppose it is required to describe the process with 

the aid of new fluxes J: and new forces F* which are 
linear functions of the former fluxes Ji and forces Fi, 
respectively, that is 

J* = PJ, (35) 

F*=QF 

where P and Q are the matrices of the transformation. 
As is shown below, only one of these can be freely 
chosen [see equation (40)]. 

The physical objectiveness of the entropy source 
(26) and relaxation entropy s’ - s, equation (18) 

demands that each of these quantities be transformed 
invariantly with respect to transformations (35) and 
(36). That means that 

and 

JTF = J*‘F* (37) 

&JTC-’ J=&J*TC*-lJ*, (38) 

We will prove that the conditions (37) and (38) lead to 
the transformation rules of the basic quantities 
describing the process, i.e. for LrC, c,, Q~, u, z and grad 

u, and imply the invariancy of the form of phenom- 
enological equation (29) with respect to (35) and (36). 

Substituting the RHS ofequations (35) and (36) into 

a new entropy source, J*T F*, and using equation (37), 
we get 

0 = J*TF* = JTPTQF = JTF. (39) 

Therefore, P’Q is the unit matrix Ef. Hence 

Q = (P’)-‘, (40) 

which gives a rule for computing the matrix Q if the 
matrix P is given (or the reverse). 

As the new entropy source is J*T F*, then the new 

phenomenological equation should have the form : 

J* = L* F*. 

Equations (34) (35), (36) and (41) yield 

(41) 

L* = PLQ-i 

$ In the absence of external magnetic field. 
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and equations (40) and (42) yield 

L* = PLPT. (43) 

This expression describes the new Onsager matrix. On 
the basis of the symmetry of L with account for (43), we 
obtain 

L* = PLPT = PLTPT = (PLPT)T = L*r, (44) 

i.e. the new matrix L* is also symmetric. 
Substituting J from (35) into the relation 

As 
r 

= JT !?. J 

2G ’ (45) 

which describes the relaxation entropy of a unit 
volume, we get 

As 
I 

=(p-1 J*)T c-l(p-IJ*) 

2G 

= J*T (Pi)-i c;Gi P-i J*. (46) 

We may see that the invariancy of As, will be 
assured [meaning that equality (38) wiil be true] if we 
use a new capacity matrix defined as 

c* = PCPT. (47) 

In the same fashion as for the matrix L* one can 
prove that the new capacity matrix C* is symmetric 
and that it results from the symmetry of the former 
matrix C. 

Actually, on the basis of equation (47) and for 
c =cr: 

C* = pcrpr = (pCpr)r = c*r. (48) 

Application of (47) and (35) to (28) gives 

cr,= J*$J=J&*' 

GJ 

t (49) 

which means that contribution of relaxation to the 
entropy source is also an invariant of the transfor- 
mation (35). 

Due to invariancy of the total entropy source and 
the relation e = o,, + u,, the quantity crd, equations (1) 
and (27), should be also invariant. This means that 

JT grad II = J*T grad u*, (50) 

just as in the classical process without relaxation. 
From equations (35) (40) and (50) we get a transfor- 
mation rule for the gradients of transfer potentials 

grad u* = P- iT grad u = Q grad u, (51) 

which is similar as to the total forces F, equation (36). 
Equation (51) also implies that 

Au* = QAu. (52) 

Finally, after considering the capacity definition and 
equations (40). (47) and (52) we get 

AZ* = PAZ, (53) 

i.e. the state variables, zir are transformed in the same 
way as the fluxes Ji. 

One can presume that the phenomenological equa- 
tion (29) has a form invariant with respect to the 
investigated transformations. Let us check this. For 
the factor before the derivative dJ/dt, equation (29), on 
having used (43) and (47), we have 

p-IL*P-iT(p-1c*p-IT)-1 

G 

=p-limp-'TpTcdp p-'L*CS-lp 

= 

G G 
-. (54) 

Applying equation (54) to (29) and using relations 
(35), (43) and (51), we get 

p-'J*=G-'P-'L*C*-'pp-'j$ 

+Pm’L*PmiTPTgradu*, (55) 

or (after multiplication of the both sides by P and 
simplifications) 

J* = L* 

i 
grada* + y T). (56) 

it is therefore proved that for the linear transfor- 
mations (35), (36) and (40), the form of the phenom- 
enological equation will not alter [compare equations 
(29) and (56)]. This fact means that the structure of (56) 
is admissible in view of the transformations 
investigated. 

Equation (56) yields a new relaxation matrix 

r* = -L* c*-’ 

G ’ (57) 

that is, the definition of r* does not change [compare 
equations (31) and (57)J. This does not mean, however, 
that r = r*. The use of (57) in the last component of 
(54) gives an important relation 

T.* = PrP-‘, (58) 

which defines the transformation rule for the re- 
laxation matrix. On the basis of equation (56) it is also 
easy to prove that the new forces Fi can be represented 
by an expression obtained from (33) by adding stars to 
the symbols. 

Examples of definite transformations taken from the 
classical theory of mass and energy transfer need 
rather a long discussion and, therefore, are considered 
in a separate paper (Part II). Now we shall pass to a 
certain generahzation of the theory. 

5. AN APPROXIMATE DESCRIPTION INCLUDING 

MOMENTUM TRANSFER 

We have generalized our analysis to construct an 
expression for the relaxation entropy in an incom- 
pressible fluid with a certain velocity field w: 

As, = $J’C-‘J - 
1 

,,a:& (59) 

where a is a deviator of the viscous part of pressure 



tensor. Then, substituting a more exact energy equa- 
tion, c.f. [26], 

3. 
dh dp 

p-= -divJ,+z-;i:grgdw, 
dt 

(60) 4. 

and equation (20) into the thermodynamic formula 
for ds’ldt we find : 

ds’ 
pdt= - TdivJ,- T-‘i:g&dw 

- 1< y div Ji 

+- JTC-l___jt,!!! 
1 dJ 1 

G dt 2GT ‘dt 
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With account for the Curie symmetry principle [20], 
equation (62) leads to the phenomenological equation 14. 
(29) already discussed above for the coupled mass and 
energy di!Tusion, as well as to the equation 

0 15. 

g= - T-‘L, gridw +A$ 
> 

, (63) 
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namics methods to investigation of heat and mass 
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which describes momentum diffusion. For G + cc this 16. 
equation must become the Newton equation. There- 
fore the Onsager coefficient L, = 2qT, in agreement 
with [20]. As a result, we come to the Maxwell l7 
equation for a viscoelastic fluid 18. 

(64) 

Thus, we have obtained the consistent thermody- 
namic theory that leads to both the phenomenological 
Cattaneo equation (for pure heat diffusion) and Max- 
well equation (for momentum diffusion). This theory 
justifies these equations from the point of view of the 
second law of thermodynamics and extends the first of 
them to the case of coupled transfer processes. It is also 
important that the theory allows a quantitative eval- 
uation of the role of heat and mass relaxation effects in 
non-Newtonian fluids described by the Maxwell body 
model. 
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THERMODYNAMIQU~ DES TRANSPORTS COUPLES DE CHALEUR, DE MASSE ET DE 
QUANTITE DE MOUVEMENT AVEC UNE VITESSE FINIE D’ONDE: I-IDEES 

THEORIQUES FONDAMENTALES 

Resume-On considtre les transferts simultants de masse et d’energie dans une onde de choc “second son”, 

se dtplacant a la vitesse C, et on trouve des relations decrivant les flux de diffusion de masse Ji et d’tnergie J, 

en fonction des sauts de concentration et d’enthalpie dans I’onde. En appliquant ces relations aux formules 

classiques de la thermodynamique pour la variation d’entropie a partir de I’equilibre, on est conduit a une 

relation importante qui defini l’entropie de relaxation AS, comme l&art d’entropie resultant de la 

presence des flux de diffusion. Une expression generale de AS, est don&e qui inclut le transfert de quantiti de 
mouvement pour les fluides incompressibles. 

On montre que la presence de I’entropie de relaxation dans le bilan d’entropie modifie la source d’entropie 

dune facon qui conduit B des equations ph~nom~nologiques avec des termes d’inertie ou, dans un cas special 

de processus sans couplage, a l’equation de Cattaneo [lJ et a Equation de Maxwell pour un fluide 
viscoelastique [2]. On developpe la theorie gtntrale des transformations des equations ph~nom~nologiques 

et des matrices de coefficients de relaxation. 

THERMODYNAMIK DES GEKOPPELTEN WARME-, STOFF- UND IMPULSTRANSPORTS 
MiT ENDLICHER WELLENCESCHWINDIGKEIT 

Zusammenfassung-Es wird der gleichzeitige Staff- und Energietransport in StoRwellen zweiter Art, die sich 
mit der Geschwindigkeit c, bewegen, untersucht. Die ermittelten Beziehungen beschreiben die 
Diffusionsstrome von Masse Ji und Energie J, in Abhangigkeit von Konzentrations- und Enthalpieanstieg 
in der Wellenfront. Die Anwendung dieser Beziehungen auf die bekannte thermodynamische Gleichung fur 
die Abweichung der Entropie vom Gleichgewichtszustand fuhrt auf eine wichtige Beziehung, die die 
sog~annte Relaxations entropie A s, als Entrop~eabweichung definiert, die sich aufgrund der auftretenden 
Diffusionsstr6me ergibt. Ein allgemeiner Ausdruck fur A s,, der den Impulstransport in inkompressiblen 
Str~mungen enthalt, wird ebenfalls angegeben. Weiter wird gezeigt, da3 das Auftreten der 
Relaxationsentropie in der Entropiebilanz die Entropiequelie in der Weise verlndert, da8 sich phanomeno- 
logische Gleichungen mit Trlgheitsgliedern oder in einem speziellen Fall bei nichtgekoppeltem Prozen die 
CattaneoGleichung [I ‘J und die Maxwell-Gleichung fur ein viscoelastisches Fluid [Z] ergeben. Es wird die 
allgemeine Theorie der Transformation von phanomenologischen Gleichungen und Relaxationskoeftizien- 

ten Matrizen entwickelt. 

TEPMO~MHAMHKA B3AMMOCBR3AHHbIX I’IPOHECCOB IIEPEHOCA TEIlJIA, 
MACCbI R MMIlYJIbCA C KOHEYHOB CKOPOCTbIG PAC~POCTPAHEH~~ BOJIHbI. 

I - OCHOBHbIE ~OnO~EH~~ TEOPHM 

AHHOT~U~~ - kfcc.WIyeTCa O~~OB~MeHHbI~ nepeHOC MaCCbI II 3HefHWI a y;tapHOii CCSTOpOii 3ByKOBOi%) 

BO,Ine, ,IIBn~yIUe~Ca CO CKOpOCTbm C,, , II nO.IIyqeHbI BbIpa~ettnII, OnnC~Ba~m~e ~~~~y3nOI~HbIe 

IIOTOKn MaCCbI .f, A 3HenrIiM J, B 3aBHCHMOCTN OT pOCTa KOHUeHTpaUnn ii 3HTaJIbnIiM 80 @pOHTe 

BOIIHbI. flOfiCTaHOBKa 3TnX COOTHOUIeHNfi B n?BeCTnyIO TepMO,LInHaMWIeCKym $OpMyJIy, OnHCbIBa- 

H)U,yIO OTKnOHeHne WrponnH OT paBHOBeCHOr0 CoCTORnna, IIonBOnnT K BamHOMy COOTHOUIeHWIO, 

C nOMOU&IO KOTOporO MOH(H0 OnpeneJIATb TaK Ha3bIBaeMym 3HTpOnIIIO lY?naKCaUnn AS, KaK OTKJIO- 

HeHne 3HTpOnnn nOJI ,!IetiCTBneM $-I+I$Iy3nOHHbIX IIOTOKOB. flpnEeZteH0 o606meHHoe IIbIpameHne ,l.IIII 

AS,, y’IHTbIBaKWee nepeHOC IlMnyJlbCl B HeCXWMaeMbIX EIIIIKOCTRX. 

~OKa3aHO. ‘IT0 HaJIWIue 3HTpOnnH peJIaKCaUnn B 3HTpOI’IntiHOM 6anance n03BOnReT BbIpa3nTb 

IfCTO’IHnK 3HTpOnNH B BMAe, yno6HOM BJIR BbIBOLta ~eHOMeAOJIOTNYeCKEiX ypaBHeHNa, COiIepXtaIUIiX 

nHep”nOHHbIe C,IaI-aeMbIe, WI,, B OTnenbHOM HeCOnpaxeHHOM Cny’iae - ypaBHcHAII RaTTaHeo [l] H 

ypaenenns MaKCaeflJIa .WuI sa3Koynpyroii XWLIKOCTA [2]. Pa3patioTaHa o6maa Teopsa npeo6pa3osa 

HnR @eHOMeHO~OI-AYeCKRX ypaBHeHnii It MaTpnU K03@jEnIIieHTOB pe.aaKCaUnn. 


