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Abstract—Simultaneous mass and energy transfer in shock “second sound” wave moving with speed ¢, is
investigated and relationships describing diffusive fluxes of mass J; and energy J_ vs. concentration and
enthalpy increments in wave front are found. Applying these relationships to the well known thermodynamic
formula for deviation of entropy from equilibrium leads to an important relationship which defines the so-
called relaxation entropy, As,, as entropy deviation resulting from the presence of diffusive fluxes. A
generalized expression for As, including momentum transfer in incompressible fluids is also given.

It is shown that the presence of relaxation entropy in the entropy balance modifies the entropy source in

the form that leads to phenomenological equations with inertial terms or, in a special case of uncoupled
process, to the Cattaneo (1958) equation [1] and Maxwell equation for a visco-elastic fluid, Luikov (1966)
[2]. The general theory of transformations of phenomenological equations and relaxation coefficient
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matrices is developed.

NOMENCLATURE

% . .
P [ci]), thermostatic matrix of
u

capacities;
specific heat;
oz*

= new matrix of capacities;

= /(G/p), constant speed of second
sound wave propagation ;

ordinary and new thermodynamic forces
(including relaxation terms and gra-
dients of transport potentials);
modulus of shear rigidity;

specific enthalpy;

deviation of enthalpy, enthalpy incre-
ment in wave front (Fig. 2);

vector of density of diffusive energy flux;
vectors of densities of diffusive mass
fluxes, 1 <i<n—-1;

col (Jy,d; ... J,_4, J,), column matrix
containing all independent fluxes;

new matrix of fluxes as a result of
transformation of matrix J;

ordinary and transformed Onsager mat-
rix, respectively;

unit normal vector;

matrices of transformations of fluxes and
forces, respectively;
pressure  and
respectively;
specific classical entropy and total speci-
fic entropy of disturbed region, respec-
tively (Fig. 2);

pressure tensor,

s

ceo A

Gy, Oy,

”’
p’
T,T%,
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relaxation entropy of unit volume;
universal gas constant;

temperature,
time;
unit tensor;
Hn— My Hp—pn-y 1
= col s )b
T T T

column matrix of ordinary transfer
potentials;

transformed matrix u;

= p~ !, specific volume;

barycentric velocity;

Hn— 4 n " Hn-1
= col d —
COo. (gra T

7}
,..., grad R
g T

1
grad F)’ column matrix of classical

thermodynamic forces;

transformed matrix X ;

mass fraction of ith component;
=col{(yy, ¥3 ... Yn-1), column matrix of
independent mass fractions;

= col (y1, ¥3 --- Yu_1, ), column matrix
of thermodynamic state (for P = const);
transformed matrix z;

deviation, increment ;

entropy source,

contributions to entropy source result-
ing from diffusion and relaxation,
respectively;

dynamic viscosity;

mass density;

original and new relaxation coefficient
matrix, respectively ;
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I, diffusional part of pressure tensor;

s chemical potential of ith component.
Subscripts

0, undisturbed state;

1. state at wave front on disturbed medium

side:

d, diffusion of mass or energy;

h, heat;

i, ith component ;

n, component in normal direction;

q, energy in coupled process;

r, relaxation ;

w, shock wave.
Superscripts

’ total entropy;

T, transpose matrix;

*, quantities obtained as a result of

transformations;
-1, reverse matrix;
0, deviator of tensor.

1. INTRODUCTION

THE PHYSICALLY natural demand that the partial
differential equations for transport processes should
secure the finite velocity of propagation of thermody-
namic state perturbation has caused a certain dispraise
of the well known conventional theory of energy, mass
and momentum transfer based on parabolic equations.
In many papers [1-15] it was emphasized that para-
bolic equations imply an infinite speed of propagation
and, therefore, they should be replaced by adequate
hyperbolic equations obtained by combining the
phenomenological relationships of the non-Fourier
(or more generally, non-Onsager) type and con-
servation equations. A considerable number of these
papers dealt with uncoupled processes as, for example,
pure heat conduction in solids [ 1-3, 5-14], isothermal
mass diffusion [2, 4, 14], and momentum diffusion [2,
8, 14].

Just lately a more general theory has been developed
[15] featuring coupled processes in which simul-
taneous mass and energy transfer takes place. In this
theory, however, thermodynamic problems connected
with the finite speed of propagation of disturbances
were not analyzed. To this theory [15] and also to the
author’s earlier paper [ 14] the reader is referred before
studying this paper.t

The relaxation terms in the non-Onsager phenomen-
ological equations, that associate thermodynamic
fluxes and forces, indeed secure the hyperbolic charac-
ter of the resulting partial differential equations [15].
But at the same time a proof is required that both the

+ In the papers quoted the reader will also find many other
valuable references concerning wave equations for transport
processes.
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phenomenological equations (with relaxation terms)
and the respective wave equations are consistent with
the non-equilibrium thermodynamics in the sense that
they secure positiveness of the entropy source ¢. The
present paper will consider this problem on the
example of simultaneous mass and energy transfer in
n-component isobaric solutions.

The state of the investigated solutions will be defined
by n—1 mass fractions y; and the enthalpy h. In the
description of the transport phenomena the densities
of diffusive mass fluxes, J, J, ... J,,_, and the density of
diffusive energy flux J, as well as transfer potentials,

Hn— Iy Hn— K2
T’ T

Uy~ Hn - g 1

N -

T ° T

will be used. The matrix notation will be frequently
exploited for which

Z=col(¥, ¥z Yao1s H)s

col u..—ul’u,.—uzmun—um’lf ’
T T T 'T

col(Jy,Jy... d,- 1, dy)

u

J

It may seem that the non-Onsager phenomenologi-
cal equations with relaxation terms [for instance the
matrix equation (30) in Section 3] are incorrect
because non-negativness of the classical expression for
the entropy source

n—1

04 = Z J,-graduy, = Z J; - grad <L;lﬁ>

k=1 i=1

+J, - grad (%)(p = const.), (1)
is not secured for such phenomenological equations.

However, this contradiction to a local formulation
of the second law of thermodynamics is only apparent
because, as is seen from what follows, equation (1) does
not precisely describe the entropy source in the non-
classical case where relaxation effects play a part. That
is why equation (1) cannot provide a basis for the
correctness of the non-Onsager equations to be
verified.

In the present (two-part) work it is shown that this
basis is provided by a certain generalized form of
equation (1) which accounts for the presence of inertial
forces associated with the time derivative of fluxesy.
Development of the method of obtaining such a basis
is one of the objectives of this paper. If generalization
of (1) could be found, then the phenomenological
equations containing the relaxation terms would result
from the condition ¢ > 0 as in the classical case.

Different generalizations of the entropy source have
already been given in the case of heat [16] and
momentum [17, 18] diffusion. These generalizations
lead, among other things, to justification of the form of
the Cattaneo equation [1] which describes pure heat
transfer. However, these generalizations are somewhat

+ E.g. the matrix equation (26) in this paper.
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formal and therefore (even in simple cases) not all of
the new coefficients have been defined. Also the
explanation of how the entropy source is modificd
when the coupled processes, such as, for instance,
simultaneous mass and energy transfer, take place.

In the present work, attention is directed towards a
general method of derivation of the equations which
describe entropy and entropy source in the presence of
relaxation effects for the processes of coupled mass and
energy transfer in chemically non-reacting solutions of
negligible compressibility.

This method is based on the analysis of the physical
situation in the “second sound” shock wave front and
on the well known classical formula for the square
approximation of entropy deviation from equilibrium
[19-21]. Owing to the latter fact all of the coefficients
appearing in the present theory are well defined. Also
presented is a certain generalization of the theory
involving momentum transfer in incompressible fluids.
It will be also shown (Part II) that the present theory
always leads to the results which correspond to the
well-known particular cases.

The classical non-equilibrium thermodynamics is
based on the local equilibrium postulate [20-22]. As a
consequence of this postulate, the theory (in the
investigated isobaric case) makes use of the equilib-
rium form of the relationship which expresses the
entropy sin terms of the enthalpy # and concentrations
;. Such an approach results in a linear dependence of
transport potential gradients on fluxes described by
the Onsager equations.

In the present work we give up the local equilib-
rium postulate and assume a priori local non-
equilibrium of continuum. The entropy of the distur-
bed non-equilibrium state differs at every point of the
continuum from the local equilibrium entropy s(h, y),
with the difference As = s — s being a function of all
the independent diffusive fluxes J,, J,, ... J,_;, J,, see
equation (16). This function is called the relaxation
entropy because it is associated with the tendency of
every element of the continuum to recover thermody-
namic equilibrium during vanishing of fluxes J or
relaxation of stresses #(max s’ = sforJ = 0andzn =
0). Since such a process is thermodynamically irrever-
sible, the relaxation entropy As = s’ — s is a negative
quantity. The present approach to a certain extent
resembles that used in dynamical problems of the
elasticity theory [23] where, however, the free energy
potential (rather than entropy) is usually used.

The project of our analysis is as follows. In Section 2
of this paper, the coupled heat and mass transport
occurring in the front of a shock wave, moving with a
constant speed c,, is investigated and the expression
describing the entropy of disturbed state as a sum of
classical entropy and relaxation entropy is worked out.
This expression is then used (Section 3) to derive a
generalized formula (26) containing an entropy source
with relaxation terms. From this formula, the genera-
lized matrix phenomenological equation of the non-
Onsager type results together with the definition of the
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matrix of relaxation coefficients. Then in Section 4, the
invariency of phenomenological equation in relation
to linear transformations of thermodynamic fluxes and
forces is discussed. In Section 5, a generalization of the
theory, including momentum transfer in incompress-
ible fluids (leading to the Maxwell equation for
viscoelastic fluid) is given.

In Part 1I of this work (a separate paper), examples
of linear transformations of fluxes and forces are given.
This treatment is used to define new forms of the non-
classical entropy source and phenomenological equa-
tions that relate new fluxes and forces. Then, on the
basis of the most suitable phenomenological equa-
tions, a system of hyperbolic-type partial differential
equations, describing thermal diffusion in multicom-
ponent systems, is derived. Finally, simplifications of
the theory to be applied to particular cases known
from the literature are discussed.

In paper [24], the significance of relaxation entropy
for formulation of the variational principles that lead
to the non-Onsager phenomenological equations and
conservation equations is treated.

2. THE COUPLED MASS AND ENERGY TRANSFER
IN A SHOCK WAVE

Consider a non-stationary shock wave in which
there is a simultaneous energy and mass transfer.

The motion of the wave is a change in position of a
certain surface of discontinuity, Fig. 1. Of course, the
wave velocity has nothing in common with the bary-
centric velocity of the medium (solid or fluid). In the
frame fixed with respect to the undisturbed part of the
medium the wave speed is of the same order as that of
sound [7]. On the other hand, the barycentric velocity
in the disturbed part is close to zero and, in media
exhibiting small compressibility, may not be taken into
account. In the case of an incompresssible continuum
the moving wave front leaves behind a thermodynami-
cally disturbed part of the medium which is at rest.

In the present consideration the conditions that
describe the jumps of thermodynamic quantities in the
wave front will be important. These conditions will be
defined by analyzing an arbitrary element of the wave
front and investigating the physical phenomena in the
frame fixed with respect to this element (in such a frame
formulation of the conditions is the easiest). The
conditions, however, will be expressed in terms of the
quantities which characterize the original frame (fixed
in relation to the undisturbed part) in which the
diffusion of mass and energy is usually described.

In the wave front frame, Fig. 1, the elements of the
continuum pass through the surface of discontinuity.
On this surface there must be a continuous mass flux
(the medium flows from side O to side 1), that is

Po(Wo—W,) Ny = p (W, —w,) n, = jo ' me. (2)

The symbol n, denotes the unit vector of the external
normal to the surface of the front, while the symbol w,,
denotes the velocity of the wave front. The velocity w,,
is determined along the normals n, = — n, (the
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FiG. 1. Designation of basic quantities characterizing the
shock wave.

direction of wave motion). Since for barycentric velo-
cities w, ~ w, ~ 0, equations (2) yield
Jomg =j; mg= —j;n = pyco, 3)
where the scalar
Co= — W, Mg =W,_ D 4)

is the propagation speed. The above definitions secure
¢o > 0. Also,j = j, mg > 0.
The mass balance of the component i ist

Yiodo Mo + J; + yirjy) 'my =0 S
Therefore, on the basis of (3) and (5)
Ji -y = pocolyiy = Yio): (6)
In a similar way the energy balance is obtained as
hojo my + J,+h4jy) my =0, (7)
or, using (3) and (7),f
J,ny = pocolhy —ho). (8)

In the medium close to the wave front, on the
undisturbed side, all the physical parameters are
constant. That is why this allows the statement that the
motion of the disturbed region is a motion of isoen-
thalpy (and at the same time of the isotherm, isobar,
etc.) surrounding the disturbed region and having the
same enthalpy (temperature, concentrations and other
properties) such as the undisturbed region. Let this
enthalpy (and concentrations) be continuous when
passing the surface of the wave front. It means that an

+1t should be kept in mind that J, and J; are “diffusive’
fluxes. These are expressed in equations (5) and (7) or (6) and
(8) in terms of concentration and enthalpy jumps.

1 Note that the presence of ¢, in equations (6) and (8) does
not imply that J, and J; are convective quantities. In fact,
these are diffusive fluxes that are ‘only expressed’ in terms of
the convective flux pycy of equation (3).
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assumption is made that the continuum on the distur-
bed side of the wave front has two enthalpies, h, and h,
(and two other sets of parameters), which describe it.
Here occurs, so to say, an extension of the state z, =
col(yy0s Y20 - - Yu_ 10> Ho) to the disturbed side, Fig. 2.
This concept can also be applied to the interior of the
disturbed part. Then, a variable extended state for an
arbitrary point of the medium can be considered.
Consequently, the local state of the mixture is de-
scribed by the vectorz = col(y,,y,,...y,_, h),and the
extended state, by the vector z+Az=col(y, +Ay,, y,
+ Ay,... h + Ah) (Fig. 2). In what follows,
advantage will be taken of such a representation of the
state of continuum. Now, let us return to investigation
of the physical situation close to the wave front.

The diffusive fluxes of mass and energy are directed
along the normal n towards the wave front, i.e. they are
orthogonal to an ‘equipotential’ surface of the un-
disturbed front side. This being so,

Jony =1, 9)

Joomy =J, (10)

Therefore, on the basis of equations (6), (8), (9) and (10}
I2 = p5c (¥ = ¥l (11)

32 = pdch(hy — hy) (12)

The directions of J; and J, are the same [cos «(J;, J,)
=1] and therefore

J; 'Jq = 9(2) C(z)(yil — Yio) (hy — hy). (13)

Equations (11)-(13) constitute an important
result—they express the state disturbance, Az; -
Zi0 — Z;;, in terms of the diffusive fluxes J,. B
We shall now describe the deficiency of entropy
close to the wave front caused by disturbances. This
deficiency, that is s; — s,, must disappear in the state
(hy, yi;;) and must be negative beyond this state,
because the entropy of deviated state s; must have a
maximum equal to s, for h = h, and y; = y,;. This
means that the first partial derivatives of s| with respect
to the increments Ah = h — h; and Ay; = y;, — y;,
must vanish for h = h, and y; = y;,, or that the
expansion of 5| about s, must begin with square terms
(should the linear terms appear in this expansion, the
first derivatives would be different from zero and the
local equilibrium entropy would not be maximum).
This expansion (for p = const.)can be written in one
of the alternative forms known from the classical

thermodynamics [19-21]:
Hn— M
T

1 n—1
5, =5, +-§[AhAT’1 + Y Ay A

k=1
1" n
=YY e AuAu,
2i k
1 n—1n— la )T
-3 2T T
Nty —p) T~ oT !
2T BIT gy n+ T } (14)
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where

u=col(u,u,...u u,)

n—12%n

def (un—ul P = o1 l)
= col =

T T 'T

The derivative [o(u, —u,)T ~'/0h],, canbereplacedin
equation (14) by the derivative (8T ~'/dy;),, based on
the Maxwell relation. These derivatives pertain to the
state T, po and y;;.

Application of equations (11-13) to express the
increments Ay; = u;y — y;; and Ah = hy — h in terms
of the diffusive fluxes yields an important expression
which describes the totalt entropy s; of the disturbed
side of wave front as

1t [6(;4,.—;1,-)T“]
Sy =58 + = T
' ' 2p} Cczj %.’; k§1 0y, Poh

n—1 6 TR T-l
XJk'Ji+2 [%]
i=1 POY1

aT™!
<o+ (G0 -
! 0h poy1 !

Here s, is the function of &, and of all y,;, known from
the classical thermodynamics, and the term containing
fluxes is the entropy of relaxation.

It is well known that the requirement for positive-
ness of the entropy source, obtained for the classical
quantity s,, leads to phenomenological relations of
Onsager’s type. It will be shown that a similar demand
for the source of the total entropy s) leads to the
Cattaneo—Vernotte type of generalized phenomen-
ological equations suggested by the present author in
[15] for the coupled processes without a thermody-
namic justification.

Since equation (15) is derived for the wave front, we
can be sure that the phenomenological equations
obtained on its basis (see below) will be exact near the
disturbed side of wave front. The corresponding
equations for the interior of disturbed region could
be, at least in principle, more general as these are
associated with a less particular physical situation. At
present, however, it will be arbitrarily assumed that
equation (15) will hold also for each point of the
disturbed region interior. The non-Onsager phenomen-
ological equations obtained in this way will have the
same form both for the disturbed side of wave front
and any point of the interior of disturbed region, which
physically seems to be be rather natural. (This is, in
fact, a standpoint based on what has been published up
till now on pure heat conduction.)

The acceptance of the standpoint that equation (15)
can be applied also to the interior of disturbed region

(15)

T By the total entropy, the sum of the classical entropy and
entropy of diffusional fluxes is meant.

1 Equation (19) can alternatively be treated as a definitive
equation for G in terms of ¢,
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results in a fundamental relationship for the total
entropy s’ of an arbitrary element of the medium:

S(ypyr . dpdy . J) =s(y,y,... h)

1 "“"“[6(;1,.—#,-)T“]
L — ) 1
2p2ck {;; k§1 oy, pok

n—1 a — T—l
XJk'Ji+2 Z[_(Eﬂ...g;;)—]
i=1 Poy

T !
. poy

This lays emphasis on the fact that the appearance of
diffusive fluxes is inseparably connected with the
inherent thermodynamic non-equilibrium which cau-
ses relaxation of fluxes (see Fig. 2 for interpretation of
the local values z = (h, y;) and their increments Az).

Itis convenient to use equation (16)in an alternative
matrix form using the so-called capacities ¢, = 8z,/0u,
[15], i.e. elements of the following matrix:

(16)

C=
r 9y, 0y, oy, oy
Bn— Ho— Hy Pn— Moy 1
o) o (572) o(*5=)o(7)
ay, dy, ay, 0y,
B Hn— B2 o= n—1 1
e7) d7%) o(==) o(7)
oh oh oh oh
Ho— 4 Hn— U2 Ho—HBn—1 i
o) o) (7= o)
(17

It is important that the matrix C is negatively defined
and symmetric [15, 19, 20] which is a consequence of
the second law of thermodynamics and Maxwell
relations.

It can be shown that the partial derivatives in
equation (16) are coefficients of matrix C~!. Therefore,
equation (16) can be written in a concise matrix form

1
s'(z,J) = s(z) + —2;5JTC_1 J.

In equation (18) the dependence [2] of modulus of
shear rigidity G on the propagation velocity:

(18)

G = pci, (19)

was exploited.} The significance of expression (18) lies
in the fact that it allows construction of a new formal
structure of the irreversible thermodynamics based on
the concept of local non-equilibrium in a continuum.
This means the renunciation of the fundamental
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assumption of local equilibrium accepted in the classi-
cal non-equilibrium thermodynamics [20-22].

The consequences of such an approach are discussed
in the next Section.

3. THE NON-CLASSICAL ENTROPY SOURCE AND
NON-ONSAGER PHENOMENOLOGICAL EQUATIONS
With the help of the conventional approach of non-
equilibrium thermodynamics we will find the entropy
source by making use of mass and energy conservation
equations in the expression for time derivative of the
total entropy s'.

The conservation equations aret:

dy;
- = —divd, i=12...n—-1, 20
P4 vl i n (20)
dh .
p87= —divd,, 21
and can be written in the following matrix form
d
pd—f — —divJ. 22)

On the other hand, on the basis of equation (18) the
expression describing time derivative of the total
entropy s’ is (for p = const.)

ds’ dh "2 (- \dy 1 dJ

= =7 1= n kA\YYk 0 qT -1

dr dt+k§,( T )dt+pGJC dr
23)

Making use of (20) and (21) in (23) gives

ds'  —divd, "I i,—m
Paa =~ 1 ~ Z( T

k=1
1 dJ
div], + =J'C'—, (24
x div "+G ar (24)
that is
ds’ 3= X mdi
P = — div ~"—;f— +J,grad T}

"o . Hn—Hn-1 1 T -1d‘]
+k§1Jk grad( T >+GJ C & 25)
(the complicated structure of the scalar in the last
component of this equation should be kept in mind).

Equation (25) shows that besides the classical
expression for the entropy source there is an additional
term connected with relaxation. Taking into con-
sideration that the column matrix J is composed of J,

and J , the non-classical entropy source resulting from

¥ Note that this ‘general’ form of conservation laws
cannot be affected by the presence of relaxation or other
terms. On the other hand, a purely thermodynamic re-
lationship [see equation (23)] must undergo a change due to
an additional (non-equilibrium) term which describes
relaxation.
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equation (25) can be written in a compact matrix form

CcC'dJ (26
G dt/ )

o=J"F =J"(gradu +

where

gradu = col [grad <#";ul>. .

— U, 1
grad (%), grad (T)}

Note the appearance of additional inertial forces in the
generalized thermodynamic forces F; of equation (26).
In [24] the role of the reversible and dissipative forces
in equation (26) is shown.

Let us notice also that equation (26) can be written
in the form:

g=0,+ 0,
where

6, =JT gradu 27
and}

-1

=J7
g, G

J (28)

describe the classical and non-classical component of
entropy source, respectively. Although such a separ-
ation is formal, sometimes it facilitates the use of
equation (26) (see Section 4).

The condition of non-negativeness of entropy
source (26) leads to a phenomenological matrix
equation

J=L <gradu + (29)

c 'dJ
G dt/
in which L is the Onsager matrix defined positively.
Note that in the case of pure heat diffusion ¢, =
—C,T? L, = pC,aT? = AT? and equation (29) is
reduced to the Cattaneo equation
a . )
Jy+ 5d,= —Zgrad T. (29a)
Co
Equation (29) can be replaced by a system of two
equations

J 4+ td =L grad u, (30)
LC™!

= - . 31

T G (31)

For equation (29) [or (30) and (31)] the entropy source
(26) takes a bilinear form:

c=J'L7'J 20 (Lz0) (32)

1 Somewhat surprisingly, the static matrix C appears in
the kinetic equation (28). This is, of course, a consequence of
our expression for As, equation (14). In Section 7 of Part II it
will be, therefore, shown that the general theory based on
equation (26) simplifies to the ‘special’ cases known earlier
from the kinetic theory.
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/s(z)
I'd

s'(z,J)
,
s’
s
s s(s,Az)
rd rd
e
siz), = 7
- ’/
’f
:s,'(z|.J)
_______ SO 4
No

F1G. 2. Interpretation of disturbed and extended states.

Equation (30) constitutes a generalization of the
Cataneo equation (29a) for coupled processes, while
equation (31) defines the matrix of relaxation coef-
ficients by two basic matrices: the kinetic (Onsager)
matrix L and the thermostatic capacity matrix C.
Equations (30) and (31) have been predicted rather
than proved by the author in the earlier work [15] but
their thermodynamic origin has not been then dis-
covered as yet.

The present theory shows that these result from
renunciation of the postulate of local equilibrium
which is one of the basic postulates in the classical
irreversible thermodynamics. Consequently, the re-
laxation terms appear as a result of application of a
more proper expression for entropy, equation (16).
Thus, no essentially new technique is required to
obtain the Cattaneo-type non-Onsager equations or
related wave equations.

It is important that here all of the new parameters
and functions (describing relaxation effects) are de-
termined quantitatively and that they are expressed in
terms of the known and measurable physical quan-
tities. Note that in the limiting case ¢, — % the
classical description based on the local equilibrium is
recovered.

4. THE GENERALIZED THEORY OF TRANSFORMATION
OF FLUXES AND FORCES AND THE INVARIANCY
OF THE PHENOMENOLOGICAL EQUATION (29)
The bracketed expression in equation (26) is a
matrix thermodynamic force of simultaneous energy

+An equation of this type is given in [20]. It takes into
account the kinetic energy of diffusion only and not the
available energy of local non-equilibrium state, as equation
(33) does. Note, therefore, the agreement of equation (33) with
the results obtained from the kinetic theory, see Section 7 of
Part I1.
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and mass transport with relaxation. In what follows

this force will be denoted by F = col(F,,F,...F,_,,
F, = F,), while the component F, is¥

"o Cntdl;

F, = gradu, + igl TS

(33)

One can see that each of the generalized forces F,
includes inertial components which depend on all the
fluxes. Equation (29) expressed in terms of the matrix F
has a simple form

J=LF. (34)

Suppose it is required to describe the process with
the aid of new fluxes J¥ and new forces F* which are
linear functions of the former fluxes J; and forces F,,
respectively, that is

J* = PJ,
F* = QF

where P and Q are the matrices of the transformation.
As is shown below, only one of these can be freely
chosen [see equation (40)].

The physical objectiveness of the entropy source
(26) and relaxation entropy s — s, equation (18),
demands that each of these quantities be transformed
invariantly with respect to transformations (35) and
(36). That means that

JIF = J*TF*

(35)
(36)

37

and

Loy Loy

2pGJC J—szJC J*.
We will prove that the conditions (37) and (38) lead to
the transformation rules of the basic quantities
describing the process, i.e. for LtC, ,, 6, u, z and grad
u, and imply the invariancy of the form of phenom-
enological equation (29) with respect to (35) and (36).

Substituting the RHS of equations (35) and (36) into
a new entropy source, J** F*, and using equation (37),
we get

(38)

c=J*TF*=JTPTQF = JTF. (39)
Therefore, PTQ is the unit matrix Ef. Hence
Q=P (40)

which gives a rule for computing the matrix Q if the
matrix P is given (or the reverse).

As the new entropy source is J*T F*, then the new
phenomenological equation should have the form:

J¥ = L*F* (41)
Equations (34), (35), (36) and (41) yield
L* =PLQ! 42)

1 In the absence of external magnetic field.



1730

and equations (40) and (42) yield

L* = PLP". 43)

This expression describes the new Onsager matrix. On
the basis of the symmetry of L with account for (43), we
obtain

L* = PLP" = PL™P” = (PLP™)" = L*", (44)

i.e. the new matrix L* is also symmetric.

Substituting J from (35) into the relation
43)

which describes the relaxation entropy of a unit
volume, we get

Av — (D—1 Tk
A, =\ )]

We may see that the invariancy of As, will be
assured [meaning that equality (38) will be true] if we
use a new capacity matrix defined as

C* = PCP™. 47

In the same fashion as for the matrix L* one can
prove that the new capacity matrix C* is symmetric
and that it results from the symmetry of the former
matrix C.

Actually, on the basis of equation (47) and for
Cc=C":

C* = PC'P" = (PCPT)' = C*". {48)
Application of {47) and (35) to (28) gives
c! c*
=JT——J =T J* 49
o, G e 49)

which means that contribution of relaxation to the
entropy source is also an invariant of the transfor-
mation (35).

Due to invariancy of the total entropy source and
the relation ¢ = g4 + 0,, the quantity g, equations (1)
and (27), should be also invariant. This means that

JT grad m = J*" grad u*, {50)

just as in the classical process without relaxation.
From equations (35), (40) and (50) we get a transfor-
mation rule for the gradients of transfer potentials

gradu* = P77 gradu = Q grad u, (51)

which is similar as to the total forces F,, equation (36).
Equation (51) also implies that
Au* = QAu. (52)
Finally, after considering the capacity definition and
equations (40), (47) and (52) we get

Az* = PAz, {(53)

StanisLAW SENIUTYCZ

ie. the state variables, z, are transformed in the same
way as the fluxes J.

One can presume that the phenomenological equa-
tion (29) has a form invariant with respect to the
investigated transformations. Let us check this. For
the factor before the derivative dJ/dt, equation (29), on
having used (43) and (47), we have

LC™!  PIL*P!(PICHPIT)!

G G
PTIL*P-ITPTC* 1P P IL*C*"'P
T G -

e
T =

(54)
Applying equation (54) to (29) and using relations
(35), (43) and (51), we get
P UJ* = G™1PTIL*C* PP J*
+P L*P T PT grad u*, (55)

or (after multiplication of the both sides by P and

simplifications}
C* -1 dJ*
G W)‘

It is therefore proved that for the linear transfor-
mations (35}, (36) and (40), the form of the phenom-
enological equation will not alter [compare equations
{29)and (56)]. This fact means that the structure of (56)

J* = L* (grad u* + (56)

is admissible in view of the transformations
investigated,
Equation (56) yields a new relaxation matrix
—L*C*1
= 57
G 57

that is, the definition of t* does not change {compare
equations (31)and (57)]. This does not mean, however,
that 7 = ¢* The use of (57) in the last component of
(54) gives an important relation

™ =PP L, {58)

which defines the transformation rule for the re-
laxation matrix. On the basis of equation (56) it is also
easy to prove that the new forces F; can be represented
by an expression obtained from (33) by adding stars to
the symbols.

Examples of definite transformations taken from the
classical theory of mass and energy transfer need
rather a long discussion and, therefore, are considered
in a separate paper (Part II}. Now we shall pass to a
certain generalization of the theory.

5. AN APPROXIMATE DESCRIPTION INCLUDING
MOMENTUM TRANSFER
We have generalized our analysis to construct an
expression for the relaxation entropy in an incom-
pressible fluid with a certain velocity field w:

1 1
As, = —JC'J — —— 3%,

2G 4GT (59)

where % is a deviator of the viscous part of pressure
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tensor. Then, substituting a more exact energy equa-
tion, c.f. [26],

dh . d ., .
pa= —divJ, +—&t-— n:grad w,

and equation (20) into the thermodynamic formula
for ds’/dt we find:

ds’ _
Par ~

(60)

- Tdiv],— T 'n:gradw

n—1
U= M .
— divJ.
i; 7 divJ;

1 dJ 1 dn
_yict& Ly
*G & 26T a4

from which the entropy source is obtainedt in matrix
notation as

c'dJ o
c=17 gradu+—a~ -n:

(61)

dr

T 'dn
T ! grad ——, (62
><< gra w+26dt> (62)
With account for the Curie symmetry principle [ 20],
equation (62) leads to the phenomenological equation
(29) already discussed above for the coupled mass and
energy diffusion, as well as to the equation

. e 1 d#

n=—-T"'L, <gradw + G dr ), (63)
which describes momentum diffusion. For G — o this
equation must become the Newton equation. There-
fore the Onsager coefficient L, = 29T, in agreement
with [20]. As a result, we come to the Maxwell

equation for a viscoelastic fluid
o 0 n dn
= —2ngradw Car
Thus, we have obtained the consistent thermody-
namic theory that leads to both the phenomenological
Cattaneo equation (for pure heat diffusion) and Max-
well equation (for momentum diffusion). This theory
justifies these equations from the point of view of the
second law of thermodynamics and extends the first of
them to the case of coupled transfer processes. It is also
important that the theory allows a quantitative eval-
uation of the role of heat and mass relaxation effects in
non-Newtonian fluids described by the Maxwell body

model.

(64)
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THERMODYNAMIQUE DES TRANSPORTS COUPLES DE CHALEUR, DE MASSE ET DE
QUANTITE DE MOUVEMENT AVEC UNE VITESSE FINIE D'ONDE: I—IDEES
THEORIQUES FONDAMENTALES

Résumé—On considére les transferts simultanés de masse et d’énergie dans une onde de choc “second son”,
se déplacant 4 la vitesse C, et on trouve des relations décrivant les flux de diffusion de masse J; et d’énergie J,
en fonction des sauts de concentration et d’enthalpie dans 'onde. En appliquant ces relations aux formules
classiques de la thermodynamique pour la variation d’entropie 4 partir de I'équilibre, on est conduit 4 une
relation importante qui défini Pentropie de relaxation AS, comme l'écart d’entropie résultant de la
présence des flux de diffusion. Une expression générale de AS, est donnée qui inclut le transfert de quantité de
mouvement pour les fluides incompressibles.

On montre que la présence de 'entropie de relaxation dans le bilan d'entropie modifie la source d’entropie
d'une facon qui conduit a des équations phénoménologiques avec des termes d'inertie ou, dans un cas spécial
de processus sans couplage, a I'équation de Cattaneo [1] et & I'équation de Maxwell pour un fluide
viscoélastique [2]. On développe la théorie générale des transformations des équations phénoménologiques

et des matrices de coefficients de relaxation.

THERMODYNAMIK DES GEKOPPELTEN WARME-, STOFF- UND IMPULSTRANSPORTS
MIT ENDLICHER WELLENGESCHWINDIGKEIT

Zusammenfassung—Es wird der gleichzeitige Stoff- und Energietransport in Sto3wellen zweiter Art, die sich
mit der Geschwindigkeit ¢, bewegen, untersucht. Die ermittelten Beziehungen beschreiben die
Diffusionsstrome von Masse J; und Energie J, in Abhingigkeit von Konzentrations- und Enthalpieanstieg
in der Wellenfront. Die Anwendung dieser Beziehungen auf die bekannte thermodynamische Gleichung fir
die Abweichung der Entropie vom Gleichgewichtszustand fiihrt auf eine wichtige Beziehung, die die
sogenannte Relaxations entropie A s, als Entropieabweichung definiert, die sich aufgrund der auftretenden
Diffusionsstrome ergibt. Ein allgemeiner Ausdruck fiir A s, der den Impulstransport in inkompressiblen
Stromungen enthdlt, wird ebenfalls angegeben. Weiter wird gezeigt, dad das Auftreten der
Relaxationsentropie in der Entropiebilanz die Entropiequelle in der Weise verdndert, dafl sich phinomeno-
logische Gleichungen mit Trigheitsgliedern oder in einem speziellen Fall bei nichtgekoppeltem Prozef} die
Cattaneo-Gleichung [ 1] und die Maxwell-Gleichung fiir ein viscoelastisches Fluid [ 2] ergeben. Es wird die
allgemeine Theorie der Transformation von phinomenologischen Gleichungen und Relaxationskoeffizien-
ten Matrizen entwickelt.

TEPMOJUHAMMKA B3AUMOCBSI3AHHBIX [TPOLECCOB NNEPEHOCA TEILIA,
MACCHI 1 UMIVJIBCA C KOHEYHOW CKOPOCTBIO PACITPOCTPAHEHHWS BOJIHBL
1 — OCHOBHBIE MOJIOXKEHWS TEOPHH

Annotamus — Hconenyercs 0ZHOBPEMEHHBIH NEPEHOC MACcChl ¥ JHEPTHHM B yAapHOH «BTOpO# 3ByKOBOMHR
BOJIHE, ABWXYLIEHCR CO CKOPOCTBIO (g, H TOJYYEHBI BBIDAXEHHS, OnuChiBaioumue AH(OYIHOHHBIE
NOTOKH Macchl J; ¥ JHEPru¥ J, B 3aBHCHMOCTH OT POCTZ KOHUEHTPALMM H SHTAILOHH BO $poHTe
BoNHbL. TTOACTAHOBKA OTHX COOTHOIUEHHH B M3BECTHYIO TePMOJMHAMMuecKyro GOpMysy, OHMCHIBA-
IOLUYI0 OTKJIOHEHHE IHTPONHH OT PABHOBECHOTO COCTONHHMSA, NPHBOAHT K BAXXHOMY COOTHOLUEHHID,
¢ NOMOIIBIO KOTOPOro MOXHO ONPEICIHTL TaK HA3LIBAEMYIO IHTPOINHIO peNakcainuu AS, KaKk OTKJIO-
HEHHE JHTPONHM noj jeicTsreM audpy3uoHHbIX noTokos. IpusencHo 0606INEHHOE BRIpAXEHHE LA
AS, , yauTBIBAIOLIEE NEPEHOC UMNYIbC B HECKHMAEMBIX KHIKOCTHAX,

[ToKa3aHO, 4TO HAJMYHE HTPONHH DENAKCAlMM B SHTponuiHOM OagaHce NO3BONSET BLIPA3HTH
HCTOYHKK JHTPONHMM B BHAE, YAoOHOM Ans BbiBoAA (EeHOMEHONOMMMECKHX YPAaBHEHHH, COACPXAlHX
MHEPIHOHHBIE CIAraeMble, HIIH B OTAETILHOM HECOTPSHKEHHOM crywae — ypaBHeHHs Kartaweo [1] u
ypaBrenus Makcsenna ans Bi3koynpyroit kuakoctu [2]. Paspaborana ofwas teopus npeobpa3zosa-

HUA GEHOMEHONIOTHYECKHX YPaBHEHHA H MaTPHU K0I(QUIUHEATOB PeIaKCALHH.



